Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses.
نویسندگان
چکیده
Presynaptic inhibition via G-protein-coupled receptors (GPCRs) and voltage-gated Ca(2+) channels constitutes a widespread regulatory mechanism of synaptic strength. Yet, the mechanism of intermolecular coupling underlying GPCR-mediated signaling at central synapses remains unresolved. Using FRET spectroscopy, we provide evidence for formation of spatially restricted (<100 Å) complexes between GABA(B) receptors composed of GB(1a)/GB(2) subunits, Gα(o)β(1)γ(2) G-protein heterotrimer, and Ca(V)2.2 channels in hippocampal boutons. GABA release was not required for the assembly but for structural reorganization of the precoupled complex. Unexpectedly, GB(1a) deletion disrupted intermolecular associations within the complex. The GB(1a) proximal C-terminal domain was essential for association of the receptor, Ca(V)2.2 and Gβγ, but was dispensable for agonist-induced receptor activation and cAMP inhibition. Functionally, boutons lacking this complex-formation domain displayed impaired presynaptic inhibition of Ca(2+) transients and synaptic vesicle release. Thus, compartmentalization of the GABA(B1a) receptor, Gβγ, and Ca(V)2.2 channel in a signaling complex is required for presynaptic inhibition at hippocampal synapses.
منابع مشابه
Presynaptic GABAB Receptors Regulate Hippocampal Synapses during Associative Learning in Behaving Mice
GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the central nervous system. Pharmacological activation of GABAB receptors regulates neurotransmission and neuronal excitability at pre- and postsynaptic sites. Electrophysiological activation of GABAB receptors in brain slices generally requires strong stimulus intensities. This raises the ques...
متن کاملGABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome.
KEY POINTS Cortico-hippocampal feed-forward circuits formed by the temporoammonic (TA) pathway exhibit a marked increase in excitation/inhibition ratio and abnormal spike modulation functions in Fmr1 knock-out (KO) mice. Inhibitory, but not excitatory, synapse dysfunction underlies cortico-hippocampal feed-forward circuit abnormalities in Fmr1 KO mice. GABA release is reduced in TA-associated i...
متن کاملBrief Communication GABAB Receptor-Mediated Presynaptic Inhibition Has History-Dependent Effects on Synaptic Transmission during Physiologically Relevant Spike Trains
Presynaptic inhibition is a form of neuromodulation that interacts with activity-dependent short-term plasticity so that the magnitude, and sometimes even the polarity, of that activity-dependent short-term plasticity is changed. However, the functional consequences of this interaction during physiologically relevant spike trains are poorly understood. We examined the effects of presynaptic inh...
متن کاملActivity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks
Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneur...
متن کاملDifferential Compartmentalization and Distinct Functions of GABAB Receptor Variants
GABAB receptors are the G protein-coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). Molecular diversity in the GABAB system arises from the GABAB1a and GABAB1b subunit isoforms that solely differ in their ectodomains by a pair of sushi repeats that is unique to GABAB1a. Using a combined genetic, physiological, and morphological approach, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 35 شماره
صفحات -
تاریخ انتشار 2011